Introduction to Significance Tests

April 8th, 2020

Objectives:

- Review the purpose of a confidence interval
- Understand the purpose of a significance test
- Get a "big picture" overview of what the 4-Step Process for conducting a Significance Test looks like

**The purpose of this lesson is to provide an introduction/overview of the unit. The following lessons will give a more in-depth look at the basics for constructing a significance test.

Review Questions:

1. When constructing a confidence interval, what information do you need to know?

2.What is the purpose of constructing a confidence interval?

Review Question Answers:

- 1. To construct a confidence interval you need a statistic, usually a sample proportion (or sample mean) from a given population. You also need a confidence level. If one is not given, you can default to a 95% confidence level. As long as you verify that the three conditions (random, normal, independent) are met you can proceed with calculating the confidence interval.
- 2. Your confidence interval tells you a range of values that the population parameter (usually population proportion or mean) might be within. In other words, your confidence interval allows you to estimate a population parameter.

Confidence Intervals vs. Significance Tests

Confidence Intervals - the population parameter is NOT known so your goal is to construct an interval of values that will estimate the population parameter

Significance Tests - a claim about a population parameter is given upfront and your goal is to assess (using data) whether or not the claim is true.

Activity: Virtual Basketball Player's Claim

The Claim: A basketball player claims that he makes 80% of his free throws.

You think that he is exaggerating.

Testing the Claim: First we need a statistic. To collect some data, we are going to have the basketball player complete a SRS of 50 free throws using a simulation app.

<u>Next Steps</u>: We will use the player's sample proportion from his sample of 50 free throws to statistically determine if his claim is valid.

Notes over the <u>entire activity can be found here</u>. This will be a helpful reference as you continue looking over these slides and also as you continue learning about this chapter.

SRS of 50 Free Throws

Significance Test Step 1: State the Problem

State

The basketball player claims he makes 80% of free throws. We write the claim as the $H_0: p = .80$ The claim, we this always assume this is true at first null hypothesis, H_0 . We believe he is exaggerating. We write this as the **alternative hypothesis**, H_a . Ha: p ≤.80 →what we hope to de find evidence to de Define p as the true proportion of free throws the player can make. We will use a **significance level** of $\alpha = .05$

Significance Test Step 2: PLAN

Significance Test Step 3: DO

If the null hypothesis is true and H_0 : p = .80, then the player's sample proportion \hat{p} of made free throws in a SRS of 50 should vary with an approximately normal sampling distribution with Sampling distribution of \hat{p} if p = 0.8Mean $\mu_{\hat{p}} = \bigcirc$ **8** \bigcirc Standard Deviation $\sigma_{\widehat{p}} =$ 0.6302 0.9132 0.74340.8000 0.8566 0.68680.9698

Significance Test Step 3: DO

We need to assess how far the statistic \hat{p} is from the claimed parameter p = .80, so we must standardize or find how many standard deviations the sample proportion is from the claimed proportion. This standardized value is called the **test statistic**.

This process is very similar to finding a z-score

Significance Test Step 4: Conclude

Since the p-value <u>24</u> is <u>areator</u> the significance level of $\alpha = .05$, then we Fail to Reject the Conclude Explain what this means in context. enough e makes 80% shots.

Notes about the Conclusion

Reject H ₀	When the p-value is really small (less than α) , you REJECT the null hypothesis H_0 . This means there is <i>statistically significant</i> evidence against the claim, H_0 , and in favor of the alternative hypothesis, H_a .
Fail to Reject H_0	When the p-value is greater than or equal to α , you FAIL TO REJECT
1	the null hypothesis H_0 . This means there is not enough evidence to reject the claim H_0 .
must use	let the claim, <i>H</i> ₀ .
this languas	e!
Margar Sau 4	our no Ho
Never "accep	t

Practice #1

Let's pretend that the basketball player actually made 32 out of 50 free throw shots.

That would make his sample proportion (p-hat) = .64

Calculate the **test statistic** and the **p-value** using this new sample proportion.

Practice #1 Answer

Test statistic = (.64 - .80)/.0566 = -2.83

```
P-Value = normalcdf(-10, -2.83) = .0023
```

**you could've also calculated the p-value with your z distribution table (Table A)

Practice #2

Since the p-value in practice #1 was .0023. What would the conclusion be?

Practice #2 Answer

Conclusion:

Since the p-value of .0023 is less than the significance level alpha=.05, then we can REJECT the null hypothesis. This means there is statistically significant evidence against the basketball player's claim that he can make 80% of his free throws. Therefore, we can conclude the alternative hypothesis, that the basketball player is exaggerating.

Practice #3

Which of the following conclusions are correctly written?

- Since the p-value .24 is greater than the the significance level alpha=.05, we can accept the null hypothesis.
- Since the p-value .24 is greater than the the significance level alpha=.05, we fail to reject the null hypothesis

Practice #3 Answer

The second sentence is correct. You NEVER "accept" the null hypothesis, you only REJECT or FAIL to REJECT the null hypothesis.